Abstract

Metallothionein (MT) is a sulfhydryl-rich protein whose levels are increased by administration of a variety of agents including metals, cytokines, and oxidative stress agents. Recent studies have suggested that MT is involved in protecting against various forms of oxidative stress, but little is known about the induction of MT by oxidative stress agents. Diethyl maleate (DEM) causes oxidative stress by depleting glutathione levels and is quite effective at increasing hepatic concentrations of MT. The purpose of the current study was to learn more about the relationship between induction of MT and oxidative stress by characterizing this increase in hepatic MT levels produced by DEM. Administration of DEM (3 to 9 mmol/kg, sc) increased hepatic MT concentration in mice as much as 37-fold to 213 μg MT/g liver, which is similar to the hepatic MT level seen after administration of other effective MT inducers, such as Cd. The maximal increase of hepatic MT took place 12 to 24 hr after administration of 5 mmol DEM/kg. This rise in MT was preceded by a 60% depletion of hepatic glutathione 3 hr after DEM and increases in both MT-I and MT-II mRNA, which reached a peak 6 to 9 hr after DEM. Administration of DEM (3–5 mmol/kg, sc) also increased MT levels in Sprague-Dawley rats. Pretreatment with DEM protected against Cd-induced hepatotoxicity in a fashion which suggested that a functional MT was being synthesized. In summary, DEM is a highly effective inducer of MT which increases MT at the mRNA level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call