Abstract

The anther (tapetum)-specific gene BcA9 was isolated from Chinese cabbage, Brassica campestris L. ssp. pekinensis cv. Jangwon, using the Arabidopsis tapetum-specific A9 gene as a probe. The DNA and amino acid sequences of the coding region of the BcA9 gene showed high homology with A9 genes from Arabidopsis and B. napus. However, the DNA sequences of the 5' noncoding (promoter) region were different, except for the sequence from -281 to -89. To test the specific activity of this promoter, a plant expression vector, pGR011, was constructed by fusing the BcA9 promoter and the cytotoxic diphtheria toxin A-chain (DTx-A) gene. Several transgenic plants from cabbage, B. oleracea ssp. capitata, were obtained by way of Agrobacterium-mediated transformation. Southern blot analysis indicated that the tapetum-specific BcA9 promoter and DTx-A gene were successfully integrated into the genome of the transgenic cabbage. Under the control of the BcA9 promoter, expression of the cytotoxic DTx-A gene in the tapetal cells of the transgenic plants resulted in male sterile cabbages. Microscopic examination revealed that pollen grains in anthers of the male sterile cabbages had not developed normally, but the vegetative growth and phenotype showed no difference compared to wild-type plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call