Abstract

Expression of the alpha-1 acid glycoprotein (AGP) gene is liver specific and acute phase responsive. Within the 180-bp region of the AGP promoter, at least five cis elements have been found to interact with trans-acting factors. Four of these elements (A, C, D, and E) interacted with AGP/EBP, a liver-enriched transcription factor, as shown by footprinting analysis and by an anti-AGP/EBP antibody-induced supershift in a gel retardation assay. Modification of these sites by site-directed mutagenesis coupled with transfection analysis indicated that AGP/EBP binding to all of these sites resulted in positive regulation of the promoter. Dose-response data suggest that AGP/EBP binding to these sites results in the cooperative activation of the promoter. In contrast, functional assays showed that element B is a negative regulatory element; this element is recognized by heat-stable DNA-binding factors which are found in many cells and tissues. The regulation of these binding proteins was studied in rat liver treated with lipopolysaccharide (LPS), which induced an acute-phase reaction. We found that LPS treatment resulted in a two- to threefold increase in AGP/EBP activity and a severalfold decrease in the activity of factors that bind to element B in the liver. These results indicate that expression of the AGP gene can be regulated by both positive and negative factors and that the modulation of these factors can account for the LPS induction of the AGP gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.