Abstract

Futile substrate cycling based on lipolytic release of fatty acids (FA) from intracellular triacylglycerols (TAG) and their re-esterification (TAG/FA cycling), as well as de novo FA synthesis (de novo lipogenesis (DNL)), represent the core energy-consuming biochemical activities of white adipose tissue (WAT). We aimed to characterize their roles in cold-induced thermogenesis and energy homeostasis. Male obesity-resistant A/J and obesity-prone C57BL/6J mice maintained at 30 °C were exposed to 6 °C for 2 or 7 days. In epididymal WAT (eWAT), TAG synthesis and DNL were determined using in vivo 2H incorporation from 2H2O into tissue TAG and nuclear magnetic resonance spectroscopy. Quantitative real-time-PCR and/or immunohistochemistry and western blotting were used to determine the expression of selected genes and proteins in WAT and liver. The mass of WAT depots declined during cold exposure (CE). Plasma levels of TAG and non-esterified FA were decreased by day 2 but tended to normalize by day 7 of CE. TAG synthesis (reflecting TAG/FA cycle activity) gradually increased during CE. DNL decreased by day 2 of CE but increased several fold over the control values by day 7. Expression of genes involved in lipolysis, glyceroneogenesis, FA re-esterification, FA oxidation and mitochondrial biogenesis in eWAT was induced during CE. All these changes were more pronounced in obesity-resistant A/J than in B6 mice and occurred in the absence of uncoupling protein 1 in eWAT. Expression of markers of glyceroneogenesis in eWAT correlated negatively with hepatic FA synthesis by day 7 in both strains. Leptin and fibroblast growth factor 21 plasma levels were differentially affected by CE in the two mouse strains. Our results indicate integrated involvement of (i) TAG/FA cycling and DNL in WAT, and (ii) hepatic very-low-density lipoprotein-TAG synthesis in the control of blood lipid levels and provision of FA fuels for thermogenesis in cold. They suggest that lipogenesis in WAT contributes to a lean phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call