Abstract

The biological activity of p53 in IW32 erythroleukemia cells was investigated. IW32 cells had no detectable levels of p53 mRNA and protein expression. By transfecting a temperature-sensitive mutant p53 cDNA, tsp53val135, into the cells, we have established several clones stably expressing the mutant p53 allele. At permissive temperature, these p53 transfectants were arrested in G1 phase and underwent apoptosis. Moreover, differentiation along the erythroid pathway was observed as evidenced by increased benzidine staining and mRNA expression of beta-globin and the erythroid-specific delta-aminolevulinic acid synthase (ALAS-E). Treatment of cells with protein tyrosine phosphatase inhibitor vanadate blocked the p53-induced differentiation, but not that of cell death or growth arrest. Increased protein tyrosine phosphatase activity as well as mRNA levels of PTPbeta2 and PTPepsilon could be observed by wildtype p53 overexpression. These results indicate that p53 induced multiple phenotypic consequences through separate signal pathways in IW32 erythroleukemia cells, and protein tyrosine phosphatase is required for the induced differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.