Abstract

Microbial co-cultivation is a promising approach for the activation of biosynthetic gene clusters (BGCs) that remain transcriptionally silent under artificial culture conditions. As part of our project aiming at the discovery of marine-derived fungal agrochemicals, we previously used four phytopathogens as model competitors in the co-cultivation of 21 marine fungal strains. Based on comparative untargeted metabolomics analyses and anti-phytopathogenic activities of the co-cultures, we selected the co-culture of marine Cosmospora sp. with the phytopathogen Magnaporthe oryzae for in-depth chemical studies. UPLC-MS/MS-based molecular networking (MN) of the co-culture extract revealed an enhanced diversity of compounds in several molecular families, including isochromanones, specifically induced in the co-culture. Large scale co-cultivation of Cosmospora sp. and M. oryzae resulted in the isolation of five isochromanones from the whole co-culture extract, namely the known soudanones A, E, D (1-3) and their two new derivatives, soudanones H-I (4-5), the known isochromans, pseudoanguillosporins A and B (6, 7), naphtho-γ-pyrones, cephalochromin and ustilaginoidin G (8, 9), and ergosterol (10). Their structures were established by NMR, HR-ESIMS, FT-IR, electronic circular dichroism (ECD) spectroscopy, polarimetry ([α]D), and Mosher’s ester reaction. Bioactivity assays revealed antimicrobial activity of compounds 2 and 3 against the phytopathogens M. oryzae and Phytophthora infestans, while pseudoanguillosporin A (6) showed the broadest and strongest anti-phytopathogenic activity against Pseudomonas syringae, Xanthomonas campestris, M. oryzae and P. infestans. This is the first study assessing the anti-phytopathogenic activities of soudanones.

Highlights

  • IntroductionFungi are prolific producers of bioactive natural products that have found valuable applications in the agrochemical industry as pesticides and biocontrol agents [1]

  • A UPLC chromatogram of the crude EtOAc extract of a 21-day Potato Dextrose Agar (PDA) whole co-culture of Cosmospora sp. and M. oryzae revealed the induction of the compounds 1-5 (Figure 1B), which were absent in the monocultures (Figure 1C,D)

  • We hypothesized that compounds 1-5 were produced for competitive advantage and so they were prioritized for isolation from the whole co-cultures

Read more

Summary

Introduction

Fungi are prolific producers of bioactive natural products that have found valuable applications in the agrochemical industry as pesticides and biocontrol agents [1]. There is an urgent need for new, natural agrochemicals against crop diseases, but the rediscovery of the known compounds poses a major hurdle to fungal natural product biodiscovery endeavours. The application of culture-based approaches that awaken the silent BGCs promises the discovery of bioactive and novel compounds [3]. One of the effective strategies employed to enhance the expression of silent BGCs in fungal cultures is co-cultivation, which is based on the premise that two or more microorganisms growing within a confined environment respond to environmental cues, which trigger the activation of BGCs to produce, often new, bioactive

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.