Abstract

Hepatocellular carcinoma is among the leading causes of cancer-related deaths worldwide and needs efficient and feasible approach of treatment. Present study focuses on exploring the anticancer activity of a secondary metabolite called siderophore of Aspergillus nidulans against hepatocellular carcinoma cell line HepG2. These small peptides are produced by microorganisms including fungi for scavenging iron from its surroundings. Fungi including Aspergillus spp. are known to produce siderophores under iron-limited conditions. Siderophores have high affinity towards iron and are classified into various types. In the present study, siderophore isolated and purified from fungal cultures was confirmed to be of hydroxamate type by chrome azurol sulfonate and Atkin's assay. HPLC analysis confirmed purity while LC-ESI-MS revealed that the siderophore is triacetyl fusigen. Cancerous cells, HepG2, grown under siderophore treatment showed inhibition in growth and proliferation in a dose- and time-dependent manner. Reduction in viability and metabolic activity was evident upon treatment as seen in trypan blue, MTT and WST assay. Fluorescent staining using PI and DAPI confirmed the same while DCFDA staining revealed increased reactive oxygen species production which might have led to cell death and deterioration. Such increase in ROS has been correlated with iron accumulation by assessing intracellular iron level through ICP-MS. To assess the effect of siderophore treatment on normal cells, WRL-68, same assays were carried out but the effect was mostly non-significant up to 48h. Thus, present work suggests that an optimum dose of siderophore purified from A. nidulans culture might prove a useful anticancer agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call