Abstract

Synergistic interaction between H-ras and p53 were systematically examined during skin tumorigenesis. Concurrent expression of an activated H-ras gene and a mutant p53 gene was accomplished by crossing p53(Val135/wt) mice with TG.AC mice. Topical application to wild-type mice with benzo(a)pyrene (BaP) alone produced approximately 26% skin tumor incidence, whereas BaP treatment of p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice produced a 75%, 77%, and 100% incidence of skin tumors, respectively. An average of 0.33 tumor per mouse was observed in wild-type (p53(wt/wt)Hras(wt/wt)) mice, whereas approximately 1.54, 1.96, and 3.08 tumors per mouse were seen in BaP-treated p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice, respectively. The effects on total tumor volume were even more striking with 7-, 48-, and 588-fold increases in tumor volume compared with wild-type (p53(wt/wt)Hras(wt/wt)) in p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice, respectively. Histopathologically, all tumors from p53(wt/wt)Hras(wt/wt) mice were either papillomas or well-differentiated squamous cell carcinomas, whereas the tumors in p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice were principally squamous cell carcinomas with varying degree of invasiveness. Particularly, tumors in p53(Val135/wt)Hras(TG.AC/wt) mice exhibited the most rapid growth and the extreme form of tumor invasion. Microarray analysis revealed that dominant-negative p53 (Val135) and activated H-ras affected several cellular processes involved in tumorigenesis possibly through its effects on apoptosis, cell cycle arrest, and Ras-mitogen-activated protein kinase pathways. The present study provides the first in vivo evidence that a germ line p53 mutation and activated H-ras act synergistically to profoundly enhance tumor progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.