Abstract
We set up a screening system to detect low-molecular-weight compounds that induce insulin expression in pancreatic acinar carcinoma AR42J cells. They can differentiate into insulin-producing cells with neuron-like morphological change when treated with activin A. We employed this morphological change for the screening of β-cell inducers among various signal transduction inhibitors. As a result, a vinca alkaloid, conophylline, induced neurite formation at 0.1∼0.3 μg/ml in 72 h, like activin A. Conophylline-treated cells were found to express insulin as measured at both mRNA and protein levels. By RT-PCR analysis, conophylline-treated cells were shown to express neurogenin3 strongly. They also expressed Beta2/NeuroD and Nkx2.2, but not Pax4 and PP. Although activin A induces nuclear translocation of Smad2, conophylline did not. But the latter induced p38 activation, like activin A, as detected by phosphorylation. Pretreatment with a p38-specific inhibitor, SB203580, lowered the conophylline-induced insulin production. Therefore, p38 activation would be involved in the differentiation of AR42J cells into insulin-producing cells. Studies on structure–activity relationship with conophyllidine, conofoline, conophyllinine, and related monomer alkaloids showed that the dimeric aspidosperma structure with the dihydrofuran unit in its center was essential for the differentiation-inducing activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.