Abstract

Abstract Radiotherapy is an important anticancer treatment modality that activates innate and adaptive immune responses. Local RT induces an influx of myeloid cells (mostly myeloid-derived suppressor cells MDSCs), which suppress T-cell function, in the tumor microenvironment (TME). Alleviating therapy-induced immunosuppression would address a significant barrier to the efficacy of current cancer immunotherapeutic approaches. When all-trans retinoic acid (RA) was administered with radiation, we observed superior antitumor responses compared with ionizing radiation (IR) alone or RA alone. The effects of combination treatment were accompanied by a marked increase of tumor necrosis factor–α– (TNFα) and inducible nitric oxide synthase (iNOS)–producing inflammatory macrophages in local and distal nonirradiated tumors. Inflammatory macrophages (Inf-MAC) are essential for the therapeutic efficacy of combination treatment by inducing effector T cell infiltration and enhancing the effector T cell to regulatory T cell ratio in local and distal tumors. T cells and T cell–derived interferon-γ are crucial for increasing inflammatory macrophage levels in IR- and RA-treated tumors. The synergistic positive feedback loop of inflammatory macrophages and adaptive immunity is required for the antitumor efficacy of IR + RA combination treatment. Our findings provide a translational and relatively nontoxic strategy for enhancing the local and systemic antitumor effects of IR. Single cell RNAseq of immune infiltrates revealed unique transcriptional changes delineating the differentiation of Inf-Mac in the TME which may lead to potential specific therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call