Abstract

BackgroundThe mechanisms governing the correlation between exposure to ultrafine particles and the increased incidence of cardiovascular disease remain unknown. Ultrafine particles appear to cross the pulmonary epithelial barrier into the bloodstream, raising the possibility of direct contact with the vascular endothelium.ObjectivesBecause endothelial inflammation is critical for the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response and that this response depends on particle composition.MethodsTo test the hypothesis, we incubated HAECs for 1–8 hr with different concentrations (0.001–50 μg/mL) of iron oxide (Fe2O3), yttrium oxide (Y2O3), and zinc oxide (ZnO) nanoparticles and subsequently measured mRNA and protein levels of the three inflammatory markers intra-cellular cell adhesion molecule-1, interleukin-8, and monocyte chemotactic protein-1. We also determined nanoparticle interactions with HAECs using inductively coupled plasma mass spectrometry and transmission electron microscopy.ResultsOur data indicate that nanoparticle delivery to the HAEC surface and uptake within the cells correlate directly with particle concentration in the cell culture medium. All three types of nanoparticles are internalized into HAECs and are often found within intracellular vesicles. Fe2O3 nanoparticles fail to provoke an inflammatory response in HAECs at any of the concentrations tested; however, Y2O3 and ZnO nanoparticles elicit a pronounced inflammatory response above a threshold concentration of 10 μg/mL. At the highest concentration, ZnO nanoparticles are cytotoxic and lead to considerable cell death.ConclusionsThese results demonstrate that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends on particle composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call