Abstract

A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens.

Highlights

  • Adeno-associated viral vectors (AAVs) hold considerable promise for the therapeutic management of a spectrum of life-threatening inherited disorders

  • We recently demonstrated that intra-tracheal delivery of AAV6.2 expressing green fluorescent protein (GFP) to fetal sheep unexpectedly resulted in robust hepatic transduction at three weeks post-injection [15]

  • Sixty day fetal sheep were injected with either AAV6.2, AAV8 or AAV9 expressing GFP

Read more

Summary

Introduction

Adeno-associated viral vectors (AAVs) hold considerable promise for the therapeutic management of a spectrum of life-threatening inherited disorders. A major limitation to successful AAV gene transfer is the generation of host immune responses to vector capsid proteins and the transgene product [1,2,3]. Since repeat administration of AAV vector and the corrective transgene will be necessary for the management of many target diseases, a clinical need exists to develop safe strategies to overcome host immune responses to both the transgene product and the vector capsid proteins. In mice, in utero exposure to AAV enabled repeat postnatal administration of AAV while avoiding a humoral immune response to vector capsid proteins [14]. The ability of in utero delivery of transgene products via the clinically relevant AAV system to induce transgene and vector capsid protein specific immune tolerance in a large animal model warrants investigation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.