Abstract

Immunocytochemistry with specific antisera was used to assess regional levels of six immediate early gene encoded proteins (KROX-24, c-FOS, FOS B, c-JUN, JUN B and JUN D) in the rat hippocampus after 15 min of bicuculline-induced seizures. Serial sections of the dorsal hippocampus were examined at various postictal recovery periods up to 24 h. The results demonstrate a complex temporal and spatial pattern of immediate early gene synthesis and accumulation. Three major categories of immediate early gene products could best be distinguished in the dentate gyrus: KROX-24 and c-FOS showed a concurrent rapid rise with peak levels at 2 h and a return to baseline levels within 8 h after seizure termination. FOS B, c-JUN and JUN B levels increased more gradually with peak intensities in the dentate gyrus reached at 4 h. These immediate early gene products showed above normal levels in various hippocampal subpopulations up to 24 h. JUN D exhibited the most delayed onset combined with a prolonged increase of seizure-induced immunoreactivity. Irrespective of this differential temporal expression profile of individual transcription factors, the sequence of induction in the hippocampal subpopulations was identical for all immediate early gene-encoded proteins examined: first in the dentate gyrus granule cells followed by CA1 and CA3 neurons, respectively. Our data indicate an asynchronous synthesis of several immediate early gene-encoded proteins in the brain after status epilepticus. FOS and JUN proteins act via homo- or heterodimer complexes at the AP-1 and other DNA binding sites. The different time-courses for individual immediate early gene products strongly suggest, that at different time-points after status epilepticus, different AP-1 complexes are effective. In vitro studies have shown that different AP-1 complexes possess different DNA binding affinities as well as different transcriptional regulatory effects. Our results suggest that these molecular mechanisms are also effective in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.