Abstract

The elevation of Hsp104 (heat shock protein) content under heat stress plays a key role in the development of thermotolerance in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress and in the stationary growth phase. The loss of mitochondrial DNA (petite mutation) was shown to inhibit the induction of Hsp104 synthesis under heat stress (39°C) and during the transition to the stationary growth phase. Also, the petite mutation suppressed the increase in activity of antioxidant enzymes in the stationary phase, which accompanied by decrease in thermotolerance. At the same time, mutation inhibited production of reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression of yeast nuclear genes upon upon entry into the stationary growth phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call