Abstract

The effect of intense visible light (light damage) on the expression of heme oxygenase 1 (HO-1), a protein induced by oxidative stress, was investigated in the rat retina. A sensitive reverse transcription-PCR assay demonstrated the expression of mRNA for HO-1 as well as HO-2, the noninducible HO form, in the normal retina. As analyzed by Northern blotting, however, HO-1 mRNA was barely detectable under normal circumstances. After exposure to intense visible light, retinas had markedly higher HO-1 mRNA levels than unexposed controls, with increases up to 52- and 98-fold at 12 and 24 hr of exposure, respectively. Intense light exposure also resulted in an increase in HO-1 protein. In contrast, no appreciable change in HO-2 mRNA or protein was observed. The increase in HO-1 message was more pronounced in rats previously reared in the dark than in those reared in a weak cyclic-light environment. A marked decrease from the high level of HO-1 mRNA induced by light insult was observed when the animals were allowed to recover in the dark for 24 hr after light exposure. Most important, treatment of animals with 1,3-dimethylthiourea, a synthetic antioxidant, prior to light exposure effectively blocked the increase in HO-1 mRNA. Thus, HO-1 is a sensitive marker for assessing light-induced insult in the retina. Since increased expression of HO-1 is thought to be a cellular defense against oxidative damage, its expression may play an important role in protecting the retina against light damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.