Abstract

Preeclampsia (PE) is one of the leading causes of fetal and maternal morbidity, affecting 5-10% of all pregnancies, and lacks an effective treatment. The exact etiology of the disorder is unclear, but placental ischemia has been shown to be a central causative agent. In response to placental ischemia, the antiangiogenic protein fms-like tyrosine kinase-1 (sFlt-1), a VEGF antagonist, and reactive oxygen species are secreted, leading to the maternal syndrome. One promising therapeutic approach to treat PE is through manipulation of the heme oxygenase-1 (HO-1) protein. It has been previously reported that HO-1 and carbon monoxide downregulate sFlt-1 production in vitro, and we have recently shown that HO-1 induction significantly attenuates placental ischemia-induced hypertension, partially through normalization of the sFlt-1-to-VEGF ratio in the placenta. The purpose of this study was to determine whether HO-1 induction would have beneficial effects independently of sFlt-1 suppression. To that end, pregnant rats were continuously infused with recombinant sFlt-1 from gestational days 14-19, and circulating sFlt-1 increased approximately twofold, similar to rats with experimentally induced placental ischemia. In response, mean arterial pressure increased 17 mmHg, which was completely normalized by HO-1 induction. Unbound circulating VEGF was decreased ∼17% in response to sFlt-1 infusion but was increased ∼50% in response to HO-1 induction. Finally, endothelial function was improved as measured by reductions in vascular expression of preproendothelin mRNA. In conclusion, manipulation of HO-1 presents an intriguing therapeutic approach to the treatment of PE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call