Abstract

Heat shock proteins (HSPs) are necessary in the synthesis, degradation, folding, transport, and translocation of different proteins. It is well known that the increased expression of HSPs may have a protective effect against cerulein-induced pancreatitis in rats or against choline-deficient ethionine-supplemented diet model pancreatitis in mice. The aim of this study was to investigate the potential effects of HSP preinduction by cold or hot water immersion on trypsin-induced acute pancreatitis in rats. Trypsin was injected into the interlobular tissue of the duodenal part of the pancreas at the peak level of HSP synthesis, as determined by Western blot analysis. The rats were sacrificed by exsanguination through the abdominal aorta 6 h after the trypsin injection. The serum amylase activity, the tumor necrosis factor-alpha, interleukin-1, and interleukin-6 levels, the pancreatic weight/body weight ratio, and the pancreatic contents of DNA, protein, amylase, lipase, and trypsinogen were measured. A biopsy for histology was taken. Hot water immersion significantly elevated the HSP72 expression, while cold water immersion significantly increased the HSP60 expression. Cold water immersion pretreatment ameliorated the pancreatic edema in trypsin-induced pancreatitis, however this was not due to the HSP60. Hot water immersion pretreatment did not have any effect on the measured parameters in trypsin-induced pancreatitis. The findings suggest that the induction of HSP60 or HSP72 are not enough to protect rats against the early phase of this localized necrohemorrhagic pancreatitis model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call