Abstract

Pentagalloylglucose (5GG) is a potent and specific inhibitor of NADPH dehydrogenase or xanthine oxidase. In our previous study, we showed that 5GG was able to induce apoptosis in HL-60 cells in a time- and concentration-dependent manner via the activation of caspase-3. Recently, we found that 5GG was capable of perturbing the cell cycle of the human breast cancer cell line MCF-7. DNA flow cytometric analysis showed that 5GG exhibited the ability of blocking MCF-7 cell cycle progression at the G1 phase. The level of several G1 phase-related cyclins and cyclin-dependent kinases did not change in these cells during a 24-hr exposure to 5GG. However, the activity of cyclin E/CDK2 was decreased in a concentration- and time-dependent manner and the activity of cyclin D/CDK4 was inhibited when serum-starved synchronized cells were released from synchronization. p27 Kip and p21 Cip, inhibitors of cyclin/CDK complexes in G1-phase, were gradually increased after 5GG treatment in a time-dependent manner and the induction of p21 Cip was correlated with an increase in p53 levels. These results suggest that the suppression of cell-cycle progression in the G1 phase by 5GG was mediated in MCF-7 cells, at least in part, by either the inhibition of cyclin D/CDK4 and cyclin E/CDK2 activity or the induction of the CDK inhibitors p27 Kip and p21 Cip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call