Abstract
Optic axons can be induced to form permanent, retinotopic connections in the auditory (medial geniculate, MG) and somatosensory (ventrobasal, VB) nuclei of the Syrian hamster thalamus; this occurs when the principal targets of retinofugal axons are ablated in newborn hamsters and alternative terminal space is created by partial deafferentation of MG or VB. The experimentally induced retinal projection to the somatosensory nucleus occurs by the stabilization of an early, normally transient projection. The present study was undertaken to determine whether the anomalous, stabilized retino-VB projection is functional. Newborn hamsters were operated on to produce permanent retino-VB projections and when the animals were mature, neurophysiological recordings were made in the cortical targets of VB, the first and second somatosensory cortices (SI and SII, respectively). Visual stimulation within well-defined receptive fields reliably evoked multi-unit responses in SI and SII of operated, but not normal hamsters. The representations of the visual field in SI and SII showed a partially retinotopic organization. These results demonstrate that optic tract axons can form functional synapses in the thalamic somatosensory nucleus, and suggest that neural structures which normally process information specific to one sensory modality have the potential to mediate function for other modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.