Abstract
AbstractDeterminant factors leading from stem cells to megakaryocytes (MKs) and subsequently platelets have yet to be identified. We now report that a combination of nuclear factor erythroid–derived 2 p45 unit (p45NF-E2), Maf G, and Maf K can convert mouse fibroblast 3T3 cells and adult human dermal fibroblasts into MKs. To screen MK-inducing factors, gene expressions were compared between 3T3 cells that do not differentiate into MKs and 3T3-L1 cells known to differentiate into MKs. 3T3 cells transfected with candidate factors were cultured in a defined MK lineage induction medium. Among the tested factors, transfection with p45NF-E2/MafG/MafK lead to the highest frequency of CD41-positive cells. Adult human dermal fibroblasts transfected with these genes were cultured in MK lineage induction medium. Cultured cells had megakaryocytic features, including surface markers, ploidy, and morphology. More than 90% of MK-sized cells expressed CD41, designated induced MK (iMK). Infusion of these iMK cells into immunodeficient mice led to a time-dependent appearance of CD41-positive, platelet-sized particles. Blood samples from iMK-infused into thrombocytopenic immunodeficient mice were perfused on a collagen-coated chip, and human CD41-positive platelets were incorporated into thrombi on the chip, demonstrating their functionality. These findings demonstrate that a combination of p45NF-E2, Maf G, and Maf K is a key determinant of both megakaryopoiesis and thrombopoiesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.