Abstract

Bisphenol A (BPA) and its analogues (BPAF, BPS) are ubiquitous environmental contaminants used as plastic additives in various daily life products, with many concerns on their role as environmental estrogens. Uterine leiomyomas (fibroids) are highly prevalent gynecologic tumors with progressive fibrosis. Fibroids are hormone-responsive and may be the target of environmental estrogens. However, the effects of BPA, BPAF, and BPS exposure on uterine fibrosis are largely unknown. Here, we evaluated fibrosis and the crucial role of TGF-beta signaling in human fibroid tumors, the profibrotic effects of BPA, BPAF or BPS in a human 3D uterine leiomyoma (ht-UtLM) in vitro model, and the long-term outcomes of BPAF exposure in rat uterus. In 3D ht-UtLM spheroids, BPA, BPAF, and BPS all promoted cell proliferation and fibrosis by increasing the production of extracellular matrices. Further mechanistic analysis showed the profibrotic effects were induced by TGF-beta signaling activation mainly through SMAD2/3 pathway and crosstalk with multiple non-SMAD pathways. Furthermore, the profibrotic effects of BPAF were supported by observation of uterine fibrosis in vivo in rats following long-term BPAF exposure. Overall, the 3D ht-UtLM spheroid can be an important model for investigating environment-induced fibrosis in uterine fibroids. BPA and its analogues can induce fibrosis via TGF-beta signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call