Abstract

Imbalanced globin chain output contributes to thalassemia pathophysiology. Hence, induction of fetal hemoglobin in β-thalassemia and other β-hemoglobinopathies are of continuing interest for therapeutic approaches. Genome-wide association studies have identified three common genetic loci: namely β-globin (HBB), an intergenic region between MYB and HBS1L, and BCL11A underlying quantitative fetal hemoglobin production. Here, we report that knockdown of HBS1L (all known variants) using shRNA in early erythroblast obtained from β0-thalassemia/HbE patients triggers an upregulation of γ-globin mRNA 1.69 folds. There is modest perturbation of red cell differentiation assessed by flow cytometry and morphology studies. The levels of α- and β-globin mRNAs are relatively unaltered. Knockdown of HBS1L also increases the percentage of fetal hemoglobin around 16.7 folds when compared to non-targeting shRNA. Targeting HBS1L is attractive because of the potent induction of fetal hemoglobin and the modest effect on cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.