Abstract
Artesunate (ART) has great value in the field of tumor therapy. Interestingly, in this study, we found that ART could obviously induce ferroptosis in hepatocellular carcinoma (HCC) cells, but its low water solubility and bioavailability limited its application potential. Hence, we synthesized ART-loaded mesoporous silica nanoparticles (MSNs) conjugated with folic acid (FA) (MSN-ART-FA) with tumor-targeting performance and assessed their characteristics. We evaluated the ability of MSN-ART and MSN-ART-FA to induce ferroptosis of hepatoma cells via testing levels of reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA) and glutathione (GSH), observation of mitochondrial morphology, as well as the expression of key proteins in ferroptosis. The results showed that prepared MSN-ART and MSN-ART-FA could remarkedly improve the bioavailability of ART to enhance ferroptosis, thereby inhibiting cell proliferation, migration and invasion in vitro. Besides, MSN-ART-FA group displayed slower tumor growth and smaller tumor volumes than MSN-ART group in HepG2 xenograft mouse model. It provided a potential therapeutic option for HCC and expanded the horizon for the clinical treatment of other cancers.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.