Abstract
Simple SummaryCancer-related fatigue (CRF) is a devastating side effect of cancer treatment, affecting the quality of life of many patients for years after treatment. This long-term side effect often results in loss of social functioning and even job loss. The cause of CRF is unknown, and consequently, CRF is often considered a ‘psychological problem’, much to the frustration of the patients. Here, we show in an animal model that the severity of CRF depends on the working mechanism of the treatment. In addition, the data show that the CRF is probably caused by a dysfunctioning circadian clock and thus has a physiological basis, as this effect depends on the anticancer drug. Therefore, the findings may have implications for the selection of chemotherapy and thus strongly improve the quality of life of future cancer survivors.Cancer-related fatigue (CRF) is the most devastating long-term side effect of many cancer survivors that confounds the quality of life for months to years after treatment. However, the cause of CRF is poorly understood. As a result, cancer survivors, at best, receive psychological support. Chemotherapy has been shown to increase the risk of CRF. Here, we study therapy-induced fatigue in a non-tumor-bearing mouse model with three different topoisomerase II-poisoning cancer drugs. These drugs either induce DNA damage and/or chromatin damage. Shortly before and several weeks after treatment, running wheel activity and electroencephalographic sleep were recorded. We show that doxorubicin, combining DNA damage with chromatin damage, unlike aclarubicin or etoposide, induces sustained CRF in this model. Surprisingly, this was not related to changes in sleep. In contrast, our data indicate that the therapy-induced CRF is associated with a disrupted circadian clock. The data suggest that CRF is probably a circadian clock disorder that influences the quality of waking and that the development of CRF depends on the type of chemotherapy provided. These findings could have implications for selecting and improving chemotherapy for the treatment of cancer in order to prevent the development of CRF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.