Abstract

Dietary zinc deficiency in rats induces hyperplasia in the esophagus and increases N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence. Previous work showed a direct relationship between epithelial cell proliferation and esophageal tumor incidence in rats given multiple doses of NMBA. We investigated the effects of single low doses of NMBA in zinc-deficient rats since a single dose of 5.0 mg/kg was reported to be non-carcinogenic in rats. Zinc-sufficient and deficient rats received a single i.g. dose of NMBA at 0.5 or 2.0 mg/kg. At week 14, tumor incidence was 50% with 0.8 +/- 1.0 tumors/rat, and 80% with 2.2 +/- 1.9 tumors/rat, in deficient groups, D(0.5) and D(2.0), that received the lower and higher dose, respectively. In addition, two small papillomas were found in one out of eight untreated zinc-deficient rats. None of the NMBA-treated or untreated zinc-sufficient rats had any tumors. Esophageal cell proliferation, as determined by proliferating cell nuclear antigen (PCNA) immunohistochemistry, showed that, irrespective of NMBA treatment, deficient esophagi had significant increases in the number of labeled cells, the total number of cells, and the labeling index, as compared with zinc-sufficient ones. Mutations in Ha-ras and p53 genes in esophageal tumors were detected by single strand conformation polymorphism (SSCP) analysis. DNA sequencing of variant conformers revealed a point mutation (GGA-->GAA, codon 12) in Ha-ras in 4/5 (80%) and 5/8 (63%) tumors, from D(0.5) and D(2.0) rats, respectively. Three out of eight tumors from D(2.0) rats exhibited SSCP mobility shifts within p53 exons 5 and 7: two tumors (2/8, 25%) had missense mutations and the third, a silent mutation. Of the two tumors with p53 mutations, one had a double mutation (transition at codon 164, TCA-->TTA; transversion at codon 241, AGT-->TGT), and the other tumor, a transition at codon 172 (AGA-->GGA), with amino acid changes in all cases. In parallel with PCNA expression, elevated p53 expression was associated with hyperplastic and dysplastic regions, as well as with tumors, in deficient esophagi. In short, these data indicate that dietary zinc deficiency, with its associated sustained increased cell proliferation in the esophagus, can drive an otherwise non-tumorigenic dose of NMBA into a highly tumorigenic one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.