Abstract

There is considerable interest in identifying nontoxic differentiation inducers for the treatment of various malignant and nonmalignant blood disorders, including inborn beta-chain hemoglobinopathies. Using the human leukemic K562 cell line as a model, we explored the efficacy of phenylacetate, an amino acid derivative with a low toxicity index when administered to humans. Treatment of K562 cultures with pharmacologically attainable concentrations of phenylacetate resulted in erythroid differentiation, evident by the reduced growth rate and increased hemoglobin production. The effect was time- and dose- dependent, further augmented by glutamine starvation (phenylacetate is known to deplete circulating glutamine in vivo), and reversible upon cessation of treatment. Molecular analysis showed that phenylacetate induced gamma globin gene expression with subsequent accumulation of the fetal form of hemoglobin (HbF). Interestingly, the addition of phenylacetate to antitumor agents of clinical interest, eg, hydroxyurea and 5-azacytidine, caused superinduction of HbF biosynthesis. The results suggest that phenylacetate, used alone or in combination with other drugs, might offer a safe and effective new approach to treatment of some hematopoietic neoplasms and severe hemoglobinopathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.