Abstract

BackgroundWe investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. Conjugated dienes level was measured as biomarker of lipid peroxidation. Malondialdehyde adduct and protein carbonyl levels, as well as protein thiol levels were measured as biomarkers of protein oxidation. DNA fragmentation was evaluated as biomarker of DNA oxidation.ResultsAfter 48 h (peak of lytic cycle), a significant increase in conjugated dienes level was observed in B95-8 and Raji cell lines (p = 0.0001 and p = 0.019 respectively). Malondialdehyde adduct, protein carbonyl levels were increased in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls (MDA-adduct: p = 0.008 and p = 0.006 respectively; Carbonyl: p = 0.003 and p = 0.0039 respectively). Proteins thiol levels were decreased by induction in B95-8 and Raji cell lines (p = 0.046; p = 0.002 respectively). DNA fragmentation was also detected in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls.ConclusionThe results of this study demonstrate the presence of increased combined oxidative modifications in lipids, proteins in B95-8 and Raji cells lines after EBV lytic cycle induction. These results suggest that lipid peroxidation, protein oxidation and DNA fragmentation are generally induced during EBV lytic cycle induction and probably contribute to the cytopathic effect of EBV.

Highlights

  • We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after Epstein Barr virus (EBV) lytic cycle induction

  • Our data show a significant rise in Conjugated dienes (CD) level in B958 and Raji cell lines after EBV lytic cycle induction (p = 0.0001 and p = 0.019 respectively) (Figure 1)

  • A significant rise in CD level was observed in B958 cell line as compared to CD level in Raji cell line (p = 0.01)

Read more

Summary

Introduction

We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. The latent cycle is characterized by the expression of six Epstein-Barr nuclear antigens (EBNAs), three latent membrane proteins LMP1, LMP2A, and LMP2B, two untranslated RNAs (EBER), and a family of transcripts from the BMH1A region of the genome [1,2]. A small number of lytically infected cells are frequently detected in biopsies of EBV-associated lymphoproliferative diseases (LPDs) in immunosuppressed individuals. An increasing number of diseases were found to be associated with EBV lytic cycle and exhibit an oxidative stress state at the same time, such as rheumatoid arthritis [19,20], and infectious mononucleosis [21]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.