Abstract

Earlier, we reported that chronic cadmium (Cd)-exposure to prostate epithelial (RWPE-1) cells causes defective autophagy, which leads to the transformation of a malignant phenotype in both in vitro and in vivo models. However, the upstream events responsible for defective autophagy are yet to be delineated. The present study suggests that chronic Cd exposure induces endoplasmic reticulum (ER) stress that triggers the phosphorylation of stress transducers [protein kinase R-like ER Kinase- (PERK), eukaryotic translation initiation factor 2-alpha- (eIF2-α) and Activating Transcription Factor 4 –(ATF-4)], resulting in defective autophagy that protects Cd-exposed RWPE-1 cells. On the other hand, inhibition of the ATF4 stress inducer by siRNA blocked the Cd-induced defective autophagy in transforming cells. While dissecting the upstream activators of ER stress, we found that increased expression of reactive oxygen species (ROS) is responsible for ER stress in Cd-exposed RWPE-1 cells. Overexpression of antioxidants (SOD1/SOD2) mitigates Cd-induced ROS that results in inhibition of ER stress and autophagy in prostate epithelial cells. These results suggest that the induction of ROS and subsequent ER stress are responsible for defective autophagy in Cd-induced transformation in prostate epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.