Abstract

Graft-versus-leukemia (GVL) effects can be induced in tolerant mixed chimeras prepared with nonmyeloablative conditioning. GVL effects can be amplified by post-grafting donor lymphocyte infusion (DLI). Unfortunately, DLI is frequently associated with graft-versus-host disease (GVHD). We investigated the feasibility of induction of potent GVL effects by DLI using intentionally mismatched lymphocytes followed by elimination of alloreactive donor T cells by cyclophosphamide for prevention of lethal GVHD following induction of very short yet most potent GVL effects. Mice inoculated with B-cell leukemia (BCL1) and mismatched donor lymphocytes were treated 2 weeks later with low-dose or high-dose cyclophosphamide. All mice receiving cyclophosphamide 2 weeks after DLI survived GVHD, and no residual disease was detected by PCR; all control mice receiving DLI alone died of GVHD. Analysis of host (female) and donor (male) DNA showed that cyclophosphamide treatment eradicated most alloreactive donor cells, yet mixed chimerism was converted to full donor chimerism following transient self-limited GVHD. Our working hypothesis suggests that short-term yet effective and safe adoptive immunotherapy of leukemia may be accomplished early post-transplantation using alloreactive donor lymphocytes, with prevention of GVHD by elimination of GVL effector cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call