Abstract

The current antiretroviral therapy cannot cure the patients infected with human immunodeficiency virus type 1 (HIV-1) due to the existence of latently infected cells capable of virus production from harboring proviral DNA. MazF is an ACA nucleotide sequence-specific endoribonuclease derived from Escherichia coli. The conditional expression of MazF by binding of HIV-1 Tat to the promoter region of a MazF-expression vector has previously been shown to selectively inhibit HIV-1 replication in acutely infected cells. The expression of MazF significantly suppressed tumor necrosis factor (TNF)-α-induced HIV-1 production and viral RNA expression in the HIV-1 latently infected cell line OM-10.1 transduced with the MazF-expression vector (OM-10.1/MFR). Moreover, the viability of OM-10.1/MFR cells decreased with increasing concentrations of TNF-α, whereas such decrease was not observed for HL-60 cells transduced with the MazF-expression vector (HL-60/MFR), the uninfected parental cell line of OM-10.1. TNF-α increased the expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase in OM-10.1/MFR cells, indicating that the cell death was caused by the induction of apoptosis. TNF-α-induced expression of MazF mRNA was detected in OM-10.1/MFR but not HL-60/MFR cells, suggesting that TNF-α-induced apoptosis of latently infected cells was due to the expression of MazF. Thus, the anti-HIV-1 gene therapy using the MazF-expression vector may have potential for the cure of HIV-1 infection in combination with suitable latency reversing agents through reducing the size of latently infected cells without viral reactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call