Abstract
Results of epidemiological research show low association of electromagnetic field (EMF) with increased risk of cancerous diseases and missing dose–effect relations. An important component in assessing potential cancer risk is knowledge concerning any genotoxic effects of extremely-low-frequency-EMF (ELF-EMF).Human diploid fibroblasts were exposed to continuous or intermittent ELF-EMF (50Hz, sinusoidal, 24h, 1000μT). For evaluation of genotoxic effects in form of DNA single- (SSB) and double-strand breaks (DSB), the alkaline and the neutral comet assay were used.In contrast to continuous ELF-EMF exposure, the application of intermittent fields reproducibly resulted in a significant increase of DNA strand break levels, mainly DSBs, as compared to non-exposed controls. The conditions of intermittence showed an impact on the induction of DNA strand breaks, producing the highest levels at 5min field-on/10min field-off. We also found individual differences in response to ELF-EMF as well as an evident exposure–response relationship between magnetic flux density and DNA migration in the comet assay.Our data strongly indicate a genotoxic potential of intermittent EMF. This points to the need of further studies in vivo and consideration about environmental threshold values for ELF exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.