Abstract

We examined the differentiation activity of retinoyl beta-D-glucuronide, a biologically active physiological metabolite of vitamin A, using the human promyelocytic leukemic cell line HL-60, which can be induced to differentiate with retinoic acid. Retinoyl beta-D-glucuronide (1 microM) inhibited HL-60 cell proliferation by 55-75%, inhibited tritiated thymidine incorporation into DNA by 63-80%, and induced 38-50% of the cells to differentiate into mature granulocytes. The potency of growth inhibition and induction of differentiation by retinoyl beta-D-glucuronide was similar to that of all-trans-retinoic acid. The continuous presence of either retinoyl beta-D-glucuronide or all-trans-retinoic acid was not required to obtain maximum growth arrest and differentiation: a 1-hr exposure of HL-60 cells to the retinoids gave the same response (measured after a total incubation time of 48 hr) as a 24-hr or 48-hr continuous treatment. Retinoyl beta-D-glucuronide (0.1-0.2 mM) was 50% less cytotoxic to HL-60 cells than all-trans-retinoic acid at an equimolar concentration. Retinoyl beta-D-glucuronide was not significantly metabolized to other retinoids; retinoic acid was not formed during incubation. We conclude that retinoyl beta-D-glucuronide can arrest HL-60 cell proliferation and induce their differentiation into mature granulocytes; it may act by itself or by being hydrolyzed to retinoic acid, which could be immediately utilized and metabolized. The therapeutic use of this retinoid as an antineoplastic agent is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.