Abstract

Protein kinase C (PKC) plays a crucial role(s) in regulation of growth and differentiation of cells. In the present study, we examined possible roles of the alpha, delta, eta, and zeta isoforms of PKC in squamous differentiation by overexpressing these genes in normal human keratinocytes. Because of the difficulty of introducing foreign genes into keratinocytes, we used an adenovirus vector system, Ax, which allows expression of these genes at a high level in almost all the cells infected for at least 72 h. Increased kinase activity was demonstrated in the cells overexpressing the alpha, delta, and eta isoforms. Overexpression of the eta isoform inhibited the growth of keratinocytes of humans and mice in a dose (multiplicity of infection [MOI])-dependent manner, leading to G1 arrest. The eta-overexpressing cells became enlarged and flattened, showing squamous cell phenotypes. Expression and activity of transglutaminase 1, a key enzyme of squamous cell differentiation, were induced in the eta-overexpressing cells in dose (MOI)- and time-dependent manners. The inhibition of growth and the induction of transglutaminase 1 activity were found only in the cells that express the eta isoform endogenously, i.e., in human and mouse keratinocytes but not in human and mouse fibroblasts or COS1 cells. A dominant-negative eta isoform counteracted the induction of transglutaminase 1 by differentiation inducers such as a phorbol ester, 1alpha,25-dihydroxyvitamin D3, and a high concentration of Ca2+. Among the isoforms examined, the delta isoform also inhibited the growth of keratinocytes and induced transglutaminase 1, but the alpha and zeta isoforms did not. These findings indicate that the eta and delta isoforms of PKC are involved crucially in squamous cell differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.