Abstract

The T-cell receptors of CD4(+) T lymphocytes recognize immunogenic peptide sequences bound within the groove of MHC class II molecules, and the peptides that bind to these molecules are known to share common structural motifs. For example, OVA(323-339), an I-A(d)-binding peptide, involves a motif of the I-A(d) peptide-binding groove. In the present study, OVA peptides of up to 26-mer were sequentially synthesized and screened, and two additional I-A(d) binding OVA peptides, OVA(20-43) and OVA(264-286), were found to stimulate CD4(+) T cells of OVA-immune BALB/c mice. OVA(20-43) involved structural motifs of the I-A(d) peptide-binding groove, while OVA(264-286) did not. The ability of these three I-A(d) binding OVA peptides to induce antigen-specific cytokine production was compared among CD4(+) T cells of mice immunized either with alum-adsorbed OVA (OVA-alum) or OVA chemically coupled to the surface of liposome (OVA-liposome). CD4(+) T cells of mice immunized with OVA-alum produced more cytokines when stimulated with OVA(264-286) than with OVA(323-339), while CD4(+) T cells of mice immunized with OVA-liposome conjugates produced more cytokines when stimulated with OVA(323-339) than with OVA(264-286). OVA(20-43) induced production of comparable levels of cytokines in mice immunized either with OVA-alum or OVA-liposome. Confocal laser scanning microscopic analysis demonstrated that chemically coupled OVA and liposomes were colocalized in APCs until OVA received processing. Three-dimensional structural analysis demonstrated that both OVA(264-286) and OVA(323-339) were present on the surface of OVA, but OVA(20-43) was not. These results suggested that the chemical coupling of OVA to liposome affected antigen processing in APCs and thus resulted in the induction of differential T-cell epitopes as compared with those induced by plain OVA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.