Abstract
The stimulation exerted by the endophytic bacterium Bacillus pumilus strain SE34 in plant defense reactions was investigated at the ultrastructural level using an in vitro system in which root-inducing T-DNA pea (Pisum sativum L.) roots were infected with the pea root-rotting fungus Fusarium oxysporum f. sp. pisi. In nonbacterized roots, the pathogen multiplied abundantly through much of the tissue including the vascular stele, whereas in prebacterized roots, pathogen growth was restricted to the epidermis and the outer cortex In these prebacterized roots, typical host reactions included strengthening the epidermal and cortical cell walls and deposition of newly formed barriers beyond the infection sites. Wall appositions were found to contain large amounts of callose in addition to being infiltrated with phenolic compounds. The labeling pattern obtained with the gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged, bacterized roots. Such compounds accumulated in the host cell walls and the intercellular spaces as well as at the surface or even inside of the invading hyphae of the pathogen. The wall-bound chitin component in Fusarium hyphae colonizing bacterized roots was preserved even when hyphae had undergone substantial degradation. These observations confirm that endophytic bacteria may function as potential inducers of plant disease resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.