Abstract

Recent literature has demonstrated the applicability of genetic programming to induction of decision trees for modelling toxicity endpoints. Compared with other decision tree induction techniques that are based upon recursive partitioning employing greedy searches to choose the best splitting attribute and value at each node that will necessarily miss regions of the search space, the genetic programming based approach can overcome the problem. However, the method still requires the discretization of the often continuous-valued toxicity endpoints prior to the tree induction. A novel extension of this method, YAdapt, is introduced in this work which models the original continuous endpoint by adaptively finding suitable ranges to describe the endpoints during the tree induction process, removing the need for discretization prior to tree induction and allowing the ordinal nature of the endpoint to be taken into account in the models built.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.