Abstract

The cytogenetic adaptive response induced by low-level radiation was studied using human and rabbit lymphocytes in vitro and bone marrow cells and germ cells in vivo. The inductive dose of X-rays was 10 mGy for the in vitro studies at a dose rate of 10 mGy/min, and 2, 10, 50, 75 and 100 mGy for the in vivo studies at a dose rate of 50 mGy/min. The challenging dose was 1.5 Gy X-rays for the in vitro experiments and 0.65 or 0.75 Gy for the in vivo experiments at a dose rate of 0.44 Gy/min. The results reported here, in addition to those that have appeared in the literature, show the following characteristics documented for the first time: (1) 10 mGy could induce the adaptive response in human as well as rabbit lymphocytes irradiated not only in G1, S and G2 phases, but also in the Go state; (2) although the induced adaptive response could only last three cell cycles, it could be revived when the inductive dose was repeated after the third cell cycle; (3) the adaptive response could be induced by low-dose X-rays in somatic cells, both in vitro (lymphocytes) and in vivo (bone marrow cells), and also in germ cells (spermatocytes); (4) the magnitude of the adaptive response induced by whole-body irradiation was found to be dose-dependent--the lower the inductive dose the more the reduction of the frequency of chromatid aberrations following the challenging dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.