Abstract
Selected drug metabolizing activities were measured in female F344 NCr rats exposed to graded dietary concentrations of Aroclor 1254 (1 to 1000 ppm) for 7 days or to lower concentrations of Aroclor (1 to 10 ppm) for up to 28 days. Following the 7-day exposure, the hepatic O-dealkylation of ethoxyresorufin (ETR), mediated primarily by cytochrome P450IA, was increased 60-, 10-, and 4-fold by 33, 10, and 3 ppm Aroclor, respectively. In rats exposed to 10 and 3 ppm Aroclor for 28 days, this activity was increased approximately 30- and 10-fold, respectively. Hepatic ETR O-dealkylase activities correlated with Aroclor concentrations in the livers of exposed rats ( r = 0.99, p < 0.01). Although the O-dealkylation of benzyloxyresorufin was highly increased by 7-days dietary exposure to 1000 ppm Aroclor, the levels of Aroclor necessary for detection of induction were substantially higher than those required for detection of ETR O-dealkylase induction. Examination of the non-P450-mediated drug metabolizing activities, epoxide hydrolase and DT-diaphorase, similarly showed limited (∼ 10-fold) increases. In contrast, aldehyde dehydrogenase (benzaldehyde, NADP +) activity was highly increased (>40-fold) at 1000 ppm, however this activity was increased to only a limited extent at lower Aroclor concentrations (e.g., ∼ 3-fold at 33 ppm). These results support the potential use of cytochrome P450 activities as potential biomarkers for environmental exposure to PCBs and related compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.