Abstract

In the companion report we used primary cultures of adult rat hepatocytes to demonstrate that glucocorticoids comprise a "class" of compounds that stimulate de novo synthesis of a form of cytochrome P-450 (P450PCN) indistinguishable from that induced by the nonhormonal steroid pregnenolone 16 alpha-carbonitrile (PCN). Because induction of P450PCN is stereospecific for glucocorticoids and is dependent on the concentration of and the length of exposure to steroids it seemed possible that P450PCN represented another of the many genes whose expression is coordinately regulated by glucocorticoids bound to their specific cytoplasmic receptor and translocated into the nucleus. However, in cultured hepatocytes treated with glucocorticoids, synthesis of P450PCN failed to parallel synthesis of a typical glucocorticoid-responsive liver function, tyrosine aminotransferase, in the time course of induction, in the concentrations of glucocorticoids required for half-maximal induction, and in the order of effective steroids ranked by potency. Indeed, two moderately potent inducers of P450PCN either failed to induce tyrosine aminotransferase (spironolactone) or actually antagonized induction of tyrosine aminotransferase synthesis by glucocorticoids (PCN). Moreover, in the same cultures in which glucocorticoid induction of tyrosine aminotransferase was blocked by the presence of PCN or other previously identified antiglucocorticoids, synthesis of P450PCN was actually enhanced. We conclude that synthesis of P450PCN is a specific glucocorticoid-responsive liver function evoked by a novel mechanism readily distinguishable from the classic glucocorticoid receptor pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.