Abstract

BackgroundTranscranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test.ResultsThere were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P < 0.05); however there was no difference across time points between unilateral and bilateral stimulation. There was also a similar significant increase in corticomotor excitability with both unilateral and bilateral stimulation immediately post, 30 minutes and 60 minutes compared to sham stimulation (all P < 0.05). Unilateral and bilateral stimulation reduced short-interval intracortical inhibition (SICI) immediately post and at 30 minutes (all P < 0.05), but returned to baseline in both conditions at 60 minutes. There was no difference between unilateral and bilateral stimulation for SICI (P > 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance.ConclusionThese results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement.

Highlights

  • Transcranial direct current stimulation is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1)

  • Baseline characteristics There were no differences in MMAX, motor-evoked potentials (MEPs) amplitude, short-interval intracortical inhibition (SICI), rmsEMG and motor function between conditions at baseline

  • Pre-trigger rmsEMG, MMAXandVAS Averaged over all conditions and time points, the mean pre-trigger rmsEMG was 0.061 ± 0.034 mV

Read more

Summary

Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Previous studies show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. Several transcranial magnetic stimulation (TMS) studies have reported increased corticomotor excitability [4,6], reduced intracortical inhibition [11,12] and reduced interhemispheric inhibition (IHI) following both unilateral (anodal-tDCS over the M1) and bilateral tDCS (simultaneously applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1) [13]. Few studies have compared the effects of unilateral-anodal and bilateral tDCS on modulating motor function [13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call