Abstract
Because of the limited differentiation capacity of human corneal endothelial cells (CECs), stem cells have emerged as a potential remedy for corneal endothelial dysfunction (CED). This study aimed to demonstrate the differentiation of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) into CECs and to investigate the efficacy of MSC-induced CEC injection into the anterior chamber in a rabbit model of CED. Human UC-MSCs were differentiated into CECs using medium containing glycogen synthase kinase 3β inhibitor and two types of Rho-associated protein kinase inhibitors. In the MSC-induced CECs, CEC-specific proteins were identified through immunohistochemistry and changes in CEC-specific gene expressions over time were confirmed through quantitative RT-PCR. When MSC-induced CECs were injected into a rabbit model of CED, corneal opacity and neovascularization were improved compared with the non-transplanted control or MSC injection group. We also confirmed that MSC-induced CECs were well engrafted as evidenced by human mitochondrial DNA in the central cornea of an animal model. Therefore, we demonstrated the differentiation of UC-MSCs into CECs in vitro and demonstrated the clinical efficacy of MSC-induced CEC injection, providing in vivo evidence that MSC-induced CECs have potential as a treatment option for CED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.