Abstract

The induction of congenital malformations among the offspring of male mice treated with X-rays at pre-meiotic and post-meiotic stages has been studied in two experiments. Firstly, animals were exposed to varying doses (108–504 cGy) of X-rays and mated at various time intervals (1–7, 8–14, 15–21 and 64–80 days post-irradiation), so as to sample spermatozoa, spermatids and spermatogonial stem cells. In the second experiment, only treated spermatogonial stem cells were sampled. One group of males was given a single 500-cGy dose, a second group a fractionated dose (500 + 500 cGy, 24 h apart) and a third group was left unexposed. In the first experiment, induced post-implantation dominant lethality increased with dose, and was highest in week 3, in line with the known greater radiosensitivity of the early spermatid stage. Preimplantation loss also increased with dose and was highest in week 3. There was no clear induction of either pre-implantation or post-implantation loss at spermatogonial stem cell stages. There was a clear induction of congenital malformations at post-meiotic stages, the overall incidence being 2.0 ± 0.32% in the irradiated series and 0.24 ± 0.17% among the controls. The induction was statistically significant at each dose. At the two highest doses the early spermatids (15–21 days) appeared more sensitive than spermatozoa, and at this stage the incidence of malformations increased with dose. The data from Expt. 1 on the induction of malformations by irradiation of spermatogonial stages were equivocal. In contrast, Expt. 2 showed a statistically significant induction of malformations at both dose levels (2.2 ± 0.46% after 500 cGy and 3.1 ± 0.57% after 500 + 500 cGy). The relative sensitivities of male stem cells, post-neiotic stages and mature oocytes to the induction of congenital malformations were reasonably similar to their sensitivities for specific-locus mutations, except that the expected enhancing effect of the fractionation regime used was not seen. Dwarfism and exencephaly were the two most commonly observed malformations in all series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call