Abstract

Mitotic apparatus (MA) were isolated in glycerol-dimethylsulphoxide solution (MTME) from zygotes of sea urchins (Stronglyocentrotus purpuratus). Freshly isolated MA were stored in 1/10 strength MTME for varying periods of time and were then injected into unfertilized frog (Rana pipiens) eggs. These injections induced 40-60% of the recipient frog eggs to initiate cleavage, resulting in the formation of blastula cell clusters. The cleavage-inducing activity of MA stored in 1/10 MTME at room temperature decreased with time of storage in 1/10 strength MTME, and disappeared by about 6 h. There was no change in the ultrastructure of MA during storage. MA isolated and stored in MTME at room temperature had a constant level of cleavage-inducing activity during the first 48 h of storage, but this activity slowly declined upon further storage; almost no activity was left after 3 weeks. MA isolated in hexylene glycol (HG) and immediately transferred into MTME were compared with MA isolated in MTME; both MA had the same cleavage-inducing activity on the day of isolation, after which the MA isolated in HG quickly lost activity. On the other hand, MA isolated and stored in HG had little cleavage-inducing activity when tested 3 h following isolation. Cleavage-inducing agent (CIA) isolated from frog brains induced cleavage and blastula formation when injected into nucleated frog eggs, but had no such activity when injected into enucleated frog eggs. MA isolated in MTME induced cleavage and blastula formation in enucleated frog eggs as well as in nucleated frog eggs. Cytological examination revealed that blastula cells which developed from MA-injected enucleated eggs contained Feulgennegative nuclei, whereas cells which developed from CIA-injected nucleated eggs contained Feulgen-positive nuclei. These results suggest that sea-urchin nuclear materials participate in mitosis in frog eggs. Isolated MA which had been stored in MTME for 3 weeks and which exhibited little cleavage-inducing activity were injected together with frog brain CIA into either normal or enucleated eggs; normal recipient eggs cleaved with significantly higher frequencies (70%) than those injected with CIA alone (40%). Furthermore, enucleated eggs injected with CIA alone failed to cleave, while those injected with MA and CIA together cleaved with significant frequencies (overall 29%). This result suggests a cooperative interaction between CIA and the inactivated MA to restore the cleavage-inducing activity of MA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call