Abstract

Synchronized and asynchronously growing cells of a V79 sub-line of the Chinese hamster were either partial-cell irradiation (λ, 254 nm) or laser-UV-microirradiated (λ, 257 nm). Post-incubation with caffeine (1–2 mM) often resulted in chromosome shattering, which was a rare event in the absence of this compound. In experiments with caffeine, the following results were obtained. Shattering of all the chromosomes of a cell (generalized chromosome shattering, GCS) was induced by partial-cell irradiation at the first post-irradiation mitosis when the UV fluence exceeded and “threshold” valued in the sensitive phases of the cell cycle (G1 and S). GCS was also induced by laser-UV-microirradiation of a small part of the nucleus in G1 of S whereas microirradiation of cytoplasm beside the nucleus was not effective. An upper limit of the UV fluence in the non-irradiated nuclear part due to scattering of the microbeam was experimentally obtained. This UV fluence was significantly below the threshold fluence necessary to induce GCS in whole-cell irradiation experiments. In other cells, partial nuclear irradiation resulted in shattering of a few chromosomes only, while the majority remained intact (partial chromosomes shattering, PCS). G1/early S was the most sensitive phase for induction of GCS by whole-cell and partial nuclear irradiation. The frequency of PCS was observed to increase when partial nuclear irradiation was performed either at lower incident doses or at later stages of S. We suggest that PCS and GCS indicate 2 levels of chromosome damage which can be produced by the synergistic action of UV irradiation and caffeine. PCS may be restricted to microirradiated chromatin whereas GCS involves both irradiated and unirradiated chromosomes in the microirradiated nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.