Abstract
Activating mutations in human fibroblast growth factor receptors (FGFR) result in a range of skeletal disorders, including craniosynostosis. Because the cranial bones are largely neural crest derived, the possibility arises that increased FGF signalling may predispose to premature/excessive skeletogenic differentiation in neural crest cells. To test this hypothesis, we expressed wild-type and mutant FGFRs in quail embryonic neural crest cells. Chondrogenesis was consistently induced when mutant FGFR1-K656E or FGFR2-C278F were electroporated in ovo into stage 8 quail premigratory neural crest, followed by in vitro culture without FGF2. Neural crest cells electroporated with wild-type FGFR1 or FGFR2 cDNAs exhibited no chondrogenic differentiation in culture. Cartilage differentiation was accompanied by expression of Sox9, Col2a1, and osteopontin. This closely resembled the response of nonelectroporated neural crest cells to FGF2 in vitro: 10 ng/ml induces chondrogenesis, Sox9, Col2a1, and osteopontin expression, whereas 1 ng/ml FGF2 enhances cell survival and Sox9 and Col2a1 expression, but never induces chondrogenesis or osteopontin expression. Transfection of neural crest cells with mutant FGFRs in vitro, after their emergence from the neural tube, in contrast, produced chondrogenesis at a very low frequency. Hence, mutant FGFRs can induce cartilage differentiation when electroporated into premigratory neural crest cells but this effect is drastically reduced if transfection is carried out after the onset of neural crest migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Developmental dynamics : an official publication of the American Association of Anatomists
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.