Abstract

Circular dichroism, ellipsometry and radiolabeling techniques were employed to study the induction of changes in the secondary structure of BSA, myoglobin and cytochrome C by a hydrophobic surface. The results showed that adsorbed protein molecules lose their ordered native structure in the initial stage of adsorption and the structure appears to be a random or disordered conformation. Protein molecules adsorbed in later stages adopt a more ordered secondary structure (alpha helix and beta structure). The changes of secondary structure of globular proteins induced by a hydrophobic surface can be explained by the steric interaction between adsorbed proteins as well as by hydrophobic interactions during the adsorption process. In addition, there is obviously an intermediate stage in which the protein molecules are mainly in the beta structure, indicating that for certain proteins, the beta structure may be a more stable secondary structure than alpha helix on the hydrophobic surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.