Abstract

Synthetic heterodisaccharides composed of glucose and xylose were tested as inducers of cellulose- and xylan-degrading enzymes in Aspergillus terreus, and the inducing abilities were compared with those of sophorose and xylobiose or their positional isomers. Measurement of secreted and cell-associated enzyme activities revealed that the heterodisaccharides induced the synthesis of the cellulolytic and xylanolytic enzymes, 2-O-beta-D-glucopyranosyl D-xylose (Glcbeta 1-2Xyl) being the most powerful inducer. Sophorose and 2-O-beta-D-xylopyranosyl D-Xylose (Xylbeta 1-2Xyl), or their positional isomers, selectively induced the synthesis of cellulases and beta-xylanases, respectively. An analysis of the extracellular enzymes (which were separated by isoelectric focusing followed by detection using chromogenic and fluorogenic substrates) showed that Glcbeta 1-2Xyl initiated the synthesis of specific endo-1,4-beta-glucanases and specific endo-1,4-beta-xylanases identical to those produced separately in response to sophorose or Xylbeta 1-2Xyl. Glcbeta 1-2Xyl also induced specific endo-1,4-beta-glucanases that hydrolysed 4-methylumbelliferyl beta-lactoside at the agluconic bond. The results strengthen the concept of separate regulatory control of the synthesis of cullulases and beta-xylanases. The results also suggest that mixed disaccharides, composed of glucose and xylose moieties, which may occur in nature, could play an important role in regulating the synthesis of wood-degrading enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.