Abstract

This study represents an optimized protocol for cell line culture of Matricaria chamomilla and the impact of clino-rotation on cell division, cell growth, and antioxidant enzyme activities for the first time. The cell suspension was transferred in the solid MS medium supplied with 2, 4-D, and KIN. Then the calli produced from a cell line were selected for callus subculture and clino-rotation treatment for 7 days by a 2D-clinostat. A significant rise of fresh and dry weights, cell division, total soluble sugar, reducing sugar, and starch contents were detected under clino-rotation. Protein content approximately unchanged in microgravity-treated calli. Antioxidant enzymes activities, such as peroxidase, catalase (CAT), and superoxide dismutase were elevated in calli exposed to microgravity. CAT activity showed a more than three-fold increase than that of control. According to native polyacrylamide gel electrophoresis, all the antioxidant enzymes isoforms were stronger in clino-rotated calli than that of the untreated control. Microgravity also stimulated H2O2 production and markedly adjusted lipid peroxidation in calli exposed to clino-rotation. These findings suggest that clino-rotation with stimulation of carbohydrate accumulation and antioxidant enzymes mitigates oxidative stress and improves growth and cell division. The isolation of M. chamomilla cell line with high growth was conducted to study the impact of clino-rotation on some cellular and antioxidative enzyme responses. Clino-rotation stimulated the cell division and growth by induction of antioxidant enzyme activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call