Abstract

Multiple myeloma has always been an important health problem in human beings due to its high morbidity, high mortality, and lack of effective therapeutic drugs. This study investigated the anticancer effect and mechanism of the newly synthesized small molecule compound CPUC002 on multiple myeloma. Our results confirmed that CPUC002 inhibited proliferation and induced G0/G1 cell cycle arrest in multiple myeloma cells. Moreover, CPUC002 also induced apoptosis by mitochondrial pathway and exogenous pathway. In mechanism, CPUC002 triggered apoptosis by stabilizing p53 in NCI-H929 cells which expressed wt-p53. Knockdown of p53 partially suppressed CPUC002-induced apoptosis. This suggests that there are other molecular mechanisms underlying CPUC002's antitumor effect. Further studies showed that the CPUC002 also inhibited the STAT3 signaling pathway, while knockdown of STAT3 abolished CPUC002-induced apoptosis and cell cycle arrest. In vivo, CPUC002 has significant antitumor activity through the same mechanism as our in vitro studies, and is highly safe in xenograft models. Together these findings indicate that CPUC002 induces apoptosis and G0/G1 cell cycle arrest in multiple myeloma cells by stabilizing p53 and inhibiting the STAT3 signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call