Abstract

Background: The natural transition from neonatal deciduous teeth to adult permanent teeth is a physiological phenomenon. Miura et al. reported the isolation and characterization of stem cells from the pulp of human exfoliated deciduous teeth (SHED). The great majority of current stem cell therapies use human adult stem cells. Since adult stem cells are multi-potent. SHED have demonstrated to have the capability to differentiate into osteogenic and odontogenic cells, adipocytes, and neural cells. When transplanted in immunocompromised mice, SHED were able to form bone. In addition, SHED have been able to differentiate into functional odontoblast and angiogenic endothelial cells. Aims and Objective: There are two objectives in our study; First, we want to confirm that SHED cells differentiate into osteogenic and neurotic cells. Second, we shall also examine whether SHED stem cells can also differentiate into cardiomyocytes. Material and Method: SHED stem cells are subjected to cardiomyogenic, neurogenic, and osteogenic induction treatment. The treated cells are the subjected to real time PCR and mmuno-histochemical analysis. The presence of calcium deposits with Alizarin Red S staining for SHED cells treated with osteogenic media was used to confirm osteogenic differentiation. Results: Our study confirmed that SHED cells differentiate into osteogenic and neurotic cells. For the first time we showed that SHED cells can also differentiate into cardiomyocytes. Conclusion: Due to their potentials and its neural crest origin, SHED are an ideal stem cell source for tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call